You are here

America's Next Top Energy Innovator Challenge


Element One, Inc.

National Renewable Energy Laboratory

Element One’s detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments.  Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen.  In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies.

Completed and proposed testing of our indicators for different applications include: large plastics manufacturing plant has completed tests, and discussions for licensing our product for use in safety shields for hydrogen fittings and valves is underway; testing programs in several oil refineries, the largest consumers of hydrogen, are being planned; an Israeli company used our products to test for degradation in zinc-air batteries for the U.S. Army; and, a proposed Canadian project to investigate the safety of hydrogen equipment in mines will incorporate our indicators into their tests. 

Interest in the technology has also come from unexpected sources.  Our technology is licensed for incorporation into a diagnostic test kit for a common sexually transmitted disease identified as a precursor to HIV.  If the protozoan parasites that cause the STD are present, the indicator changes color when it reacts with the hydrogen produced as a metabolic byproduct during their growth in a culture medium.

Recent research has found that ingested hydrogen has unique and therapeutic benefits, and a medical research team is intending to dissolve hydrogen in a beverage.  Our indicator is being tested for possible incorporation into the packaging to provide assurance to the consumer that hydrogen is still present.

Element One is working in collaboration with NREL to accelerate development of new devices to alleviate concerns about hydrogen safety in consumer environments with the introduction of hydrogen cars.  The transition to hydrogen as a fuel would quadruple the size of the market for our products.

Element One was formed by veterans of NREL in Boulder, Colorado in 2005.

Our patented visual hydrogen gas indicators use either thin films or nano-particles of a transition metal oxide with a very thin, discontinuous coating of a catalyst to catalyze its reaction with hydrogen. Element One’s indicating thin films and coatings can be applied to a variety of materials for a variety of applications, making for a whole suite of potential products.  Thin films may be applied to stretch films or shrink wrap to cover or encapsulate tanks, equipment, fittings and valves.  Nano-particles can be used as pigments in indicating paints and printing inks, and may be applied with a brush, spray can, paint or marking pen, or applied to decals or tape.  Either thin films or paints can be used in a network of our RFID sensors, providing a low cost, effective system to continuously monitor for leaks.  When used to supplement electronic sensors, these new products can dramatically provide new levels of safety and economy in industrial operations that use hydrogen.

Impact on the Country and /or the Economy
Hydrogen is widely used in industry, and there are strong financial incentives to monitor hydrogen leaks.  Hydrogen is expensive; leaked hydrogen is equivalent to lost profits. In the worst-case scenario, industrial gas leaks can cause loss of human life and large-scale financial loss.  Companies must meet greenhouse-gas emission regulations and workplace safety and OSHA standards.  The costs in labor and system downtime caused by leak testing can be significant.  One oil industry representative indicated that RFID sensors could save his company more than $50 million per year.


7AC Technologies, Inc.
National Renewable Energy Laboratory

7AC Technologies, based in Woburn, Massachusetts, is developing Liquid Desiccant HVAC systems for Commercial and Industrial buildings using technology from the National Renewable Energy Laboratory. These Liquid Desiccant HVAC systems deliver a 50 to 75 percent reduction in energy usage over conventional HVAC units. The system consists of a membrane conditioner responsible for drying and cooling the air and a heat-driven regenerator. The liquid desiccant design allows for the utilization of solar or waste heat sources, paving the way for net-zero energy retrofits to existing buildings with costs comparable to conventional HVAC.

Learn More
Borla Performance Industries, Inc.
Oak Ridge National Laboratory

Borla Performance Industries, based in Johnson City, has an option to license a novel, nano-pore membrane technology from Oak Ridge National Laboratory. Combining this innovation with Borla’s exhaust technology will lead to a low cost, unique exhaust system that will double as an energy neutral device to recover and reclaim clean water from engines powered by diesel, gasoline or natural gas. Military and commercial applications include transport and stationery power plants, marine, cars and trucks.

Learn More

Iowa Powder Atomization Technologies, Inc. (IPAT), based in Nevada, Iowa, is using gas atomization technology developed at Ames Laboratory to make titanium powder with processes that are ten times more efficient than traditional powder-making methods — significantly lowering the cost of the powder to manufacturers. The powder form of titanium is easier to work with than having to cast the metal — where manufacturers melt and pour liquid metal into molds — particularly given titanium’s tendency to react with the materials used to form molds. Titanium’s strength, light weight, biocompatibility and resistance to corrosion make it ideal for use in a variety of parts — from components for artificial limbs — like those used by wounded veterans returning from Iraq and Afghanistan — to military vehicle components, biomedical implants, aerospace fasteners and chemical plant valves.

Learn More
Woodmont Enterprises LLC
Oak Ridge National Laboratory

Woodmont Enterprises, based in Nashville, Tennessee, is creating a top-coat solution moisture barrier product for oriented-strand board (OSB), an engineered wood product formed by layering flakes of wood, by using technology developed at Oak Ridge National Laboratory. The primary focus is to create a moisture barrier on OSB during transportation and after installation. One net benefit to moisture protected OSB after installation is mold resistance.

Learn More
SynchroPET LLC
Brookhaven National Laboratory

SynchroPET, based in Shoreham, New York, is a start-up biotech firm with the next generation of PET Scanners, which have superior imaging capabilities to what is currently available on the market today. SynchroPET's technology was developed at Brookhaven National Laboratory and it enabled SynchroPET to miniaturize the typical PET Scanner while improving its image. SynchroPET's technology can be paired with an existing MRI machine for a simultaneous image. These advances will accelerate the creation of new pharmaceuticals to treat cancers, and Alzheimer and Parkinson’s diseases. SynchroPET currently has four prototypes built, and each have been used by researchers from labs in New York.

Learn More
California Lithium Battery, Inc.
Argonne National Laboratory

California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

Learn More
TrakLok Corporation
Oak Ridge National Laboratory

TrakLok, Inc., based in Knoxville, Tenn., intends to use an Oak Ridge National Laboratory (ORNL)-developed, technology for tagging, tracking, locating and communicating with cargo containers and trailers in transit. The ORNL technology provides an avenue to meet increasing requirements for shipping containers to be "smart boxes" that can be tracked electronically. TrakLok uses GPS technology and satellite communications as part of its tracking and warning capability and international container locking technology to protect against container tampering, theft, vandalism and smuggling. Shipments can be tracked through a web-accessible, information technology-based global tracking system to provide real time visibility of cargo.

Learn More
US e-Chromic
National Renewable Energy Laboratory

US e-Chromic LLC, based in Boulder, Colorado, will use electrochromic technology developed by the National Renewable Energy Laboratory (NREL) to create a new thin film window material that reflects sunlight on demand, making windows more energy efficient while reducing cooling costs for consumers.

Learn More
Vorbeck Materials Corp.
Pacific Northwest National Laboratory

Vorbeck Materials, based in Jessup, Md., is using a Pacific Northwest National Laboratory (PNNL)-developed method for building tiny chemical structures to greatly improve the performance of lithium-ion batteries. Lithium-ion batteries are rechargeable batteries that are widely used in portable devices such as laptops and power electric vehicles. Vorbeck is using PNNL’s method to develop better lithium air and lithium sulfur batteries. The new material in Vorbeck’s batteries stores twice as much electricity at high charge and discharge rates as current lithium-ion batteries, and creates increased battery capacity and a longer cycle life.

Learn More
Umpqua Energy, Inc.
Argonne National Laboratory

Umpqua Energy, based in Medford, Oregon, is using an Argonne National Laboratory technology to develop a system that allows a gasoline engine to operate in an extreme lean burn mode in order to increase gasoline mileage. One negative side effect of a lean burn engine, whether powered by gasoline or diesel fuel, is an increase in the amount of harmful gases released to the environment. The company expects to both increase fuel economy and simultaneously reduce emissions with its system.

Learn More
Integrated Dynamic Electron Solutions, Inc.
Lawrence Livermore National Laboratory

Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic Transmission Electron Microscopes (DTEM) to enable imaging of nanoscale objects, such as proteins, thin films and nanoparticles at unprecedented time scales and frame rates. By utilizing a laser-driven electron source, DTEMs are able to produce short bursts of electrons that can form an image with nanometer resolution in as little as 10 nanoseconds. This enables observation of dynamics in material systems that play an important role in a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron Solutions uses technology developed at Lawrence Livermore National Laboratory.

Learn More
SH Coatings LP
Oak Ridge National Laboratory

SH Coatings, based in Dallas, Texas, employs Super Hydrophobic Coating (SHC) technology that protects power systems by preventing ice accumulation on power lines in ice storm threatened areas and contamination of power lines from salt on the coasts. In order to successfully utilize and commercialize the SHC technology for this application, tools to apply the coating onto new and existing lines must be developed. SH Coatings is developing these tools with the help of technology from Oak Ridge National Laboratory.

Learn More
Teknikem, A Division of RockinBoat LLC
Y12 National Security Complex

Teknikem is developing a chemical blend platform technology invented by the Y12 National Security Complex that is known as RonJohn. RonJohn is a safer, more eco-friendly alternative to dangerous chemicals and processes used to strip paints and adhesives from parts and equipment. RonJohn is not toxic, not flammable, not carcinogenic but is biodegradeable and very effective on many plastics, paints, and adhesives. Market segments and channels are being developed including the military, aerospace, shipping construction/maintenance, ground transportation, general industry, and consumer retail.

Learn More